
IJSRSET1622276 | Received : 13 April  2016 | Accepted : 20 April 2016 | March-April 2016 [(2)2: 812-819]  

 

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

812 

 

Restoration of Speckled SAR Images 
 

N. Mohan Raju*, P. Navya, N. Vyshnavi, R.Dharma Teja 
 

Department of Electronics and Communication Engineering, Brindavan Institute of Technology and Science 

Kurnool, Andhra Pradesh, India 

 
ABSTRACT 
 

Many coherent imaging modalities such as synthetic aperture radar suffer from a multiplicative noise, commonly 

referred to as speckle, which often makes the interpretation of data difficult. An effective strategy for speckle 

reduction is to use a dictionary that can sparsely represent the features in the speckled image. However, such 

approaches fail to capture important salient features such as texture. In this paper, we present a speckle reduction 

algorithm that handles this issue by formulating the restoration problem so that the structure and texture components 

can be separately estimated with different dictionaries. To solve this formulation, an iterative algorithm based on 

surrogate functions is proposed. Experiments indicate the proposed method performs favourably compared to state-

of-the-art speckle reduction methods. 
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I. INTRODUCTION 

 

Coherent imaging systems such as synthetic aperture 

radar (SAR), holography, ultrasound and synthetic 

aperture sonar suffer from a multiplicative noise known 

as speckle. Speckle appears when objects illuminated by 

coherent radiation have surface features that are rough 

compared with the illuminating wavelength. It is caused 

by the constructive and destructive interference of the 

coherent returns scattered by many elementary reflectors 

within the resolution cell. Speckle can make the 

detection and interpretation difficult for automated as 

well as human observers. In some cases, it may be 

important to remove speckle to improve applications 

such as compression, target recognition, and 

segmentation. 

 

Many algorithms have been developed to suppress 

speckle noise. One of the simplest approaches for 

speckle non-coherently summing the independent 

images formed from L independent pieces of the phase 

history. The averaging process reduces the noise 

variance by a factor of L. However, this often results in 

the reduction of the spatial resolution. Other types of 

speckle reduction methods are based on spatial local 

filtering performed after the formation of the SAR image. 

Various filters have been developed that avoid the loss 

in spatial resolution. Some of these methods are based 

on a window processing of the noisy image. 

 

II. METHODS AND MATERIAL 

 

2. Existing Methods 

To overcome some of these limitations, wavelet-based 

methods are often utilized, in which noise shrinkage is 

applied to the detailed wavelet coefficients of the noisy 

image. Since speckle is multiplicative in nature, some of 

these methods often apply the logarithm transform to 

SAR images to convert the multiplicative noise into 

additive noise. After applying soft or hard thresholding 

to the wavelet co-efficient of the logarithmically 

transformed image, an exponential operation is 

employed to convert the logarithmically transformed 

image back to the original multiplicative format. 

 

It is well known that shrinkage-based de-noising 

algorithms rely on the sparsity/ of the representation. A 

fixed transform such as a wavelet transform can 

represent a piecewise smooth image sparsely but it may 

also fail to represent an image with textures sparsely. As 

a result, the overall de-noising performance of a fixed 

https://bitskurnool.edu.in/


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

813 

transform on an image containing both piecewise 

smooth and texture components can be inadequate. 

Several methods have been proposed that use a 

combined dictionary approach to image restoration. 

Suppose that we are given M different dictionaries D, m 

= 1,...,M; then one can obtain M different estimates of x 

by applying either hard or soft threshold to the co-

efficient from each corresponding dictionary. Let ˆx be 

the resulting estimate from the i th dictionary. Then, a 

simple estimator of x is given by averaging M individual 

estimates. This simple method suffers from some issues 

in practice, as it weighs equally both good and bad 

quality estimates. To deal with this problem, a Bayesian 

framework to optimally combine the individual 

estimators was proposed in [27]. This method weights 

each estimate ˆx at each sample according to the 

significance that the elements in the dictionary D have in 

synthesizing ˆx at the same sample. This method is 

effective, but it can be very time consuming. A similar 

approach was also proposed in. 

 

Specifically, a SAR image, considered as a function f, is 

to be decomposed into a sum of two components f = u+v, 

where u represents the cartoon or geometric (i.e., 

piecewise smooth) components off, and v represents the 

oscillatory or textured components. The second 

component essentially accounts for noise and the texture 

elements. In the proposed technique, u is estimated and 

is considered as the restored (de-speckled) image, while 

the textured components of v are not attempted to be 

recovered. This is problematic since discarding the 

texture components may result in the loss of important 

salient features in a SAR image. Fig. 1 provides an 

example of how an image separates into the structural 

and textured components indicating the importance of 

retaining these textural elements. Motivated by recent 

advances in sparse  representation based image 

separation [30], we propose a similar separation based 

de-speckling method so that the image is decomposed 

into a sum of piecewise smooth and textured elements. 

Our formulation is based on finding sparse 

representations of these elements from dictionaries 

specifically suited to compress them, and differs 

significantly by not just treating the texture and noise 

components as complements of the cartoon-based 

estimated image. By taking advantage of the ability of 

sparse representations in our scheme to estimate, we are 

able to retain important salient and textured features in 

the final estimated image. 

3. Proposed Method 

3.1Block Diagram 

 

 
Figure 1.  Block Diagram 

SAR Image: 

Synthetic aperture radar (SAR) is a form of radar 

which is used to create images of objects, such as 

landscapes – these images can be either two or three 

dimensional representations of the object. 

DWT (Discrete Wavelet Transform): 

In numerical analysis and functional analysis, a discrete 

wavelet transform (DWT) is any wavelet transform for 

which the wavelets are discretely sampled. As with other 

wavelet transforms, a key advantage it has over Fourier 

transforms is temporal resolution: it captures both 

frequency and location information (location in time). 

Haar Wavelets: 

The first DWT was invented by Hungarian 

mathematician Alfred Haar. For an input represented by 

a list of numbers, the Haar wavelet transform may be 

considered to pair up input values, storing the difference 

and passing the sum. This process is repeated 

recursively, pairing up the sums to provide the next 

scale, which leads to  differences and a final sum. 
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Sub band HH: 

Dwt is the algorithm used to reduce dimensionality of 

image so it used for image compression, feature 

extraction process. DWT algorithm decomposes the 

image into 4 sub band (sub image) ie, LL, LH, HL, HH. 

DWT output extracts the detailed output of input image. 

LL is the approximate image of input image it is low 

frequency sub band so it is used for further 

decomposition process.. LH sub band extract the 

horizontal features of original image HL sub band gives 

vertical features HH sub band gives diagonal features. 

DCHWT: 

DCHWT stands for Discrete Cosine Haar Wavelet 

Transform. Each discrete cosine transform (DCT) uses N 

real basis vectors whose components are cosines. In the 

DCT-4, for example, the jth component of $\boldv_k$ is 

$\cos (j + \frac{1}{2}) (k + \frac{1}{2}) \frac{\pi}{N}$. 

These basis vectors are orthogonal and the transform is 

extremely useful in image processing. If the vector 

$\boldx$ gives the intensities along a row of pixels, its 

cosine series $\sum c k \boldv_k$ has the coefficients 

$c_k=(\boldx,\boldv_k)/N$. They are quickly computed 

from a Fast Fourier Transform. 

 

Image Quality Index: 

 

Image quality index, which is easy to calculate and 

applicable to various image processing applications. 

Instead of using traditional error summation methods, 

the proposed index is designed by modeling any image 

distortion as a combination of three factors: loss of 

correlation, luminance distortion, and contrast distortion. 

Although the new index is mathematically defined and 

no human visual system model is explicitly employed, 

our experiments on various image distortion types 

indicate that it performs significantly better than the 

widely used distortion metric mean squared error. 

Demonstrative images and an efficient MATLAB 

implementation of the algorithm are available. 

 

Structural Components: 

 

The structural components is defined as a cartoon or 

geometric or piecewise smooth components of an image 

expect the text information all information is present in 

structural components. 

Textural Components: 

 

Textural components represent the oscillatory or 

textured components. This component essentially 

accounts for noise and the texture elements. In order to 

get the salient features we are separating the structural 

components and textural components.  

 

Curve Let Transform: 

 

Curve let transform are a non-adaptive technique for 

multi-scale object representation. Being an extension of 

the wavelet concept, they are becoming popular in 

similar fields, namely in image processing and scientific 

computing. 

 

Shear Let Transform: 

 

In applied mathematical analysis, shear lets are a multi 

scale framework which allows to efficiently encode 

anisotropic features in multivariate problem classes. 

Originally, shear lets were introduced in 2006 for the 

analysis as well as sparse approximation of functions 

. They are a natural extension of wavelets to 

accommodate the fact that multivariate functions are 

typically governed by anisotropic features such as edges 

in images; however, wavelets as isotropic objects are not 

capable of capturing such phenomena. 

Shear lets are constructed by parabolic scaling, shearing 

and translation applied to a few generating functions. At 

fine scales, they are essentially supported within skinny 

and directional ridges following the parabolic scaling 

law, which reads length² ≈ width. 

Thresholding: 

Thresholding is the simplest method of image 

segmentation. From a grayscale image, thresholding can 

be used to create binary images. The simplest 

thresholding methods replace each pixel in an image 

with a black pixel if the image intensity is less than 

original image some fixed constant T (that is, ), or 

a white pixel if the image intensity is greater than that 

constant. In the example image on the right, this results 

in the dark tree becoming completely black, and the 

white snow becoming complete white.  
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Image Restoration: 

 

Image Restoration is the operation of taking a 

corrupt/noisy image and estimating the clean, original 

image. Corruption may come in many forms such as 

motion blur, noise and camera mis-focus. 

 

De speckled image: 

 

The restored image is also known as de speckled image 

 

3.2 Image Restoration 

 

Images are often degraded during the data acquisition 

process. The degradation may involve blurring, 

information loss due to sampling, quantization expects, 

and various sources of noise. The purpose of image 

restoration is to estimate the original image from the 

degraded data. Applications range from medical imaging, 

astronomical imaging, to forensic science, etc. Often the 

benefits of improving image quality to the maximum 

possible extent far outweigh the cost and complexity of 

the restoration algorithms involved.  

 

3.2.1 Degradation Model 

 

The most general degradation model is that of a 

conditional pdf for the data y given the original image x, 

as depicted in Fig. 1.The domains of x and y are 

generally (but not always) discrete. For instance, x and y 

could be images with the same number N of pixels. 

Figure 1: General statistical model for image restoration. 

We consider positive models that are representative of 

actual image restoration problems or at least are useful 

mathematical abstractions thereof.  

 

Additive white noise 

                                   
 Linear blur plus additive white noise 

                                     
 

where H represents the effects of camera or object 

motion, atmospheric turbulence, optics, etc. Model 3: 

Tomography Consider the following imaging system for 

transmission tomography [1, Ch. 10]. An object 

(typically a slice of a patient's body) is irradiated along 

direction µ by an X-ray or gamma-ray source. These 

high-energy photons travel through the object and are 

subsequently detected and counted. At each location (x; 

y) inside the object, the photon is subject to possible 

capture, with probability f(x; y)dl over an elementary 

path segment of length dl. The intensity of the surviving 

photons that travelled along light path L is therefore 

given by 

                                                     

 
where ¸0 is the source intensity in the direction of L. For 

a light path L with coordinates (s; µ) (see Fig. 5), the 

normalized log-intensity at the detector is given by                                                      

 
 

3.3 Multiplicative Noise 

 

Image Noise is random variation of brightness or color 

in an image. It can be produced by any circuitry such as 

sensor, scanner or digital camera. Image noise is an 

undesirable signal, it’s produce by image capturing 

device that add extra information. In many cases, it 

reduces image quality and is especially significant when 

the objects being imaged are small and have relatively 

low contrast. This random variation in image brightness 

is designated noise. This noise can be either image 

dependent or image independent. 

 

3.3.2 Speckle Noise 

 

Speckle noise is multiplicative noise. This type of noise 

occurs in various imaging systems such as Laser, 

Medical, Optical and SAR imagery. The source of this 

noise is a form of multiplicative noise in which the 

intensity values of the pixels in the image are multiplied 

by random values. Speckle noise in image is serious 

issue, causing difficulties for image representation. It is 

caused by coherent processing of backscattered signals 

from multiple distributed targets. The fully developed 

speckle noise has the characteristic of multiplicative 

noise. Speckle noise in image is a multiplicative noise; it 

is in direct proportion to the local grey level in any area. 
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Here a (x,y) is original signal and b (x,y) is noise 

introduce into signal to produce the corrupted image P 

(x,y). (x,y) represent the pixel location. Speckle noise 

follows a gamma distribution and it is give by: 

 

                         
 

Where, a_ is variance, g is gray level and F (g) is 

Gamma distribution. The figure 3.1 below shows the 

plot of speckle noise gamma distribution. 

 

3.3Statistics of Speckle Noise 

 

The pixel-to-pixel intensity variation in SAR images has 

a number of consequences; the most obvious one being 

that the use of a single pixel intensity value as a measure 

of distributed targets’ reflectivity would be erroneous. 

We know that the received signal is complex; let r and i 

denote its real and imaginary components. For a single-

look SAR image, the intensity I=r2+i2 of a zone of 

constant reflectivity is exponentially distributed. The 

amplitude A, which is the square root of I, follows a 

Rayleigh distribution. For an N-look image and 

independent looks, the intensity follows a Gamma 

distribution. 

 

There are several ways of obtaining N-look amplitude 

images in the spatial domain: 

 

Case 1. Averaging N amplitude images; 

 

Case 2. Averaging N intensity images, then taking the 

square root; 

 

Case 3. Coherently averaging complex images by means 

of the Weighted Filter,then taking the square root. In 

case 1, the probability density function is obtained by N 

convolutions of Rayleigh distributions, but cannot be 

expressed in analytic form. In the cases 2 and 3 it can be 

shown that the amplitude follows a K -distribution. A 

usual way of characterizing the speckle level in SAR 

image is to compute L=E2 (I) /σ2 (I) over an area of 

constant reflectivity; L is often called ENIL (Equivalent 

Number of Independent Looks) and gives no 

information on the spatial resolution of an image. We 

will also use the MSE between the ideal 

and noisy images (in the case where the ideal image is 

available), which reflects both speckle reduction and 

preservation of structures. 

 

3.4 Model of Speckle Noise 

 

An inherent characteristic of ultrasound imaging is the 

presence of speckle noise. Speckle noise is a random and 

deterministic in an image. Speckle has negative impact 

on ultrasound imaging, Radical reduction in contrast 

resolution may be responsible for the poor effective 

resolution of ultrasound as compared to MRI. In case of 

medical literatures, speckle noise is also known as 

texture. Generalized model of the speckle is represented 

as, 

 
 

Where, g(n,m) is the observed image, u(n,m) is the 

multiplicative component and ξ (n,m) is the additive 

component of the speckle noise. Here n and m denotes 

the axial and lateral indices of the image samples. In the 

ultrasound imaging considers only multiplicative noise 

and additive noise is to be ignored. Hence, above 

equation can be modified as; Therefore, 

             

 
 

3.5 Image with Different Types Noise 

 

Quality of an image is degraded by noise. Various type 

of noise can come into image with different strength. 

Some noisy images with different level of variance is 

shown in figure. 

 

 

 

 

 

 

 

 

 

Figure 2. (a)original SAR image(b)Gaussian noisy SAR 

image with var 0.02(c)salt and pepper noisy SAR image with 

var 0.05(d) speckle noisy SAR image with var 0.08. 
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Exactly in phase, as in a laser, so it does not disperse 

over the distance between the satellite and the Earth's 

surface. A SAR device can measure both intensity and 

phase of the reflected light, resulting highly sensitive to 

textures. Experiments with the technique of 

interferometer have shown that SAR can accurately 

model relieves, and appears also able to reveal small 

changes over time. Some consequences are that it works 

day and night as well, it can be used to gain additional 

information with respect to optical imagery, especially 

when different polarization are available on the same 

platform, it needs more power than passive sensors to be 

operated (and can therefore only operate intermittently), 

and that it suffers from speckle, an artifact of 

interference patterns in coherent light. The SAR is radar. 

It uses microwave frequency radiation, which penetrates 

cloud and haze, so it views the Earth's land and sea 

surface in all weather that is the major advantage of SAR 

for general-purpose remote sensing. The first 

implementation of radar interferometer came in Earth-

based observations of Venus (Rogers & Ingalls, 1969). 

The first reported experiments to determine terrain 

elevation of the Earth were by Graham (1974). Ten years 

later, interferometric radar experiments on the airborne 

system Convair-990 and on the space borne systems 

Seasat and SIR-B took place. Since 1990 the interest in 

SAR interferometer has grown due to the impressive 

amount of data suitable for interferometer from ERS-1 

and the many airborne systems available such as the 

AIRSAR. 

 

SAR images are suitable for vegetation studies, as well 

as ocean waves, winds, currents, seismic activity and 

moisture content. In practice, by properly processing the 

complex SAR images, it is possible to obtain high-

resolution topographic maps (5 m or less height 

resolution), measure very small (1 cm or less) Earth 

surface motion over large swaths, measure water surface 

currents (with an accuracy around 5 cm/s) and classify 

land surfaces. In particular, the following main 

applications are worth citing:_ Ground topography: 

Studies on vulcanology and Earth surface motion related 

to differential SAR interferometer are well known. ERS-

1 helps the evaluation of digital elevation models with a 

grid spacing of about 50 m and a height accuracy of 

about 5 m. AIRSAR and Do-SAR allow the evaluation 

of the digital elevation models with a grid spacing 

smaller than 10 m and a height accuracy around 1 m. 

The SAR-derived digital elevation models (DEM) have 

a big impact in the field of the topography: They are 

replacing the stereo DEMs derived from optical systems 

(Hogda, Guneriussen & Lauknes, 2002)._ Ocean surface 

current measurements: Ocean surface currents having 

speeds of less than 4 cm/s have been observed by 

Goldstein & Zebker (1987). _ Earth surface motion 

detection: Massonet (1993) shows the possibility of 

measuring the residual displacement caused by the 

earthquakes. The differential interferometer is clearly 

validated for long term survey of slow faults (typically 

10 mm/year measured with ERS-1). This is a remarkable 

result, because, due to the motion errors of the aircraft, it 

is very difficult to implement the differential 

interferometer in an operational way .Land surface 

classification: By carrying out repeat-pass interferometer, 

coherence maps and change detection of SAR images 

can be used to provide properties of land surfaces. 

Results using ERS-1 data show the capability of the 

classification of forest, open fields, urban areas and open 

water (Lin, Alpers, Khoo, Lim, Lim & Kasilingam, 

2001). An exemplary commercial SAR system is 

depicted in the Figure 2: It is a Predator Lynx synthetic 

aperture radar system. 3.2 Some details on imaging radar 

and SAR An imaging radar uses an antenna and a digital 

computer to store the acquired images. A radar image is 

generated only by the light that gets reflected back 

towards the antenna. Radar measures the strength and 

round-trip time of the microwave signals that are emitted 

by an antenna and reflected from a distant surface or 

object. Its antenna alternately transmits and receives 

pulses at particular microwave wavelengths (in the range 

of 1 cm to 1 m, which corresponds to a frequency range 

of about 300 MHz to 30 GHz) and polarizations (waves 

polarized in a single vertical or horizontal plane). About 

1500 high-power pulses per second are transmitted 

towards the target, with each pulse having pulse duration 

of typically 10-50 microseconds. The pulse normally 

span a small band of frequencies, centered on the 

frequency selected for the radar; typical bandwidths are 

in the range 10 to 200 MHz At the Earth's surface, the 

energy content of the incoming radar pulse is scattered in 

all directions, while only a fraction of it is reflected back 

towards the antenna. Such energy returns to the radar as 

a weaker radar echo and is received by the antenna in a 

specific polarization (not necessarily the same as the 

transmitted pulse). Since the radar pulse travels at the 

speed of light, it is relatively straightforward to use the 

measured time corresponding to the roundtrip of a 
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particular pulse to calculate the distance or range to the 

reflecting object. 

 

In the case of imaging radar, the radar moves along a 

light path and the area illuminated by the radar, or 

footprint, is moved along the surface, building the image 

(see Figure 3). The chosen pulse bandwidth determines 

the resolution in the range direction (higher bandwidth 

means higher resolution in this dimension), while the 

length of the radar antenna determines the resolution in 

the azimuth direction of the image (the longer the 

antenna, the ner the resolution in this dimension).In an 

imaging radar, the term “aperture" means the opening 

used to collect the reflected energy. Because the radar is 

moving with respect to the ground, the returned echoes 

are Doppler-shifted (negatively when the radar 

approaches a target, positively when it moves away). 

Comparing the  

 
Figure 3.  Exemplary representation of SAR footprint 

 

Doppler-shifted frequencies to a reference frequency 

allows returned signals to be \focused" on a single point, 

effectively increasing the length of the antenna. 

 

SAR data focusing consists in correctly matching the 

variation in Doppler frequency for each point in the 

image; this operation requires a precise knowledge of the 

relative motion between the platform and the imaged 

objects. Some SARs can transmit pulses in either 

horizontal (H) or vertical (V) polarization and receive in 

either H or V modes, with the resultant combinations of 

HH (Horizontal transmit, Horizontal receive), VV, HV, 

or VH. Additionally, some SARs can measure the phase 

of the incoming pulse and therefore measure the phase 

difference (in degrees) in the return of the HH and VV 

signals. This difference is frequently retained as an 

indicator of structural characteristics of the areas or 

objects under observation. These SARs can also measure 

the correlation coefficient for the HH and VV returns, 

which can be considered as a measure of how alike the 

portions of the areas or objects are. Radar images are 

composed of many dots, or picture elements. Each pixel 

in the radar image represents the radar backscatter for an 

area on the ground: Bright areas represent high 

backscatter (bright features mean that a large fraction of 

the radar energy was reflected back to the radar), while 

darker areas in the image represent low backscatter (dark 

features imply that very little energy was reflected back 

to the antenna). Backscatter for a target area at a 

particular wavelength varies because of several 

conditions, as the size of the scatters in the target area, 

the moisture content of the target area, the polarization 

of the pulses, the values of emitted wavelengths, and the 

observation angles. A rule that helps interpreting the 

radar images is that the brighter the backscatter on the 

image, the rougher the surface being imaged. Flat 

surfaces that reflect little microwave energy always 

appear dark in radar images. Vegetation is usually 

moderately rough on the scale of most radar wavelengths 

and appears as gray in a radar image. Some areas not 

illuminated by the radar, like the back slope of 

mountains, are in shadow, and appear dark. Roads and 

freeways are at surfaces so they appear dark. Backscatter 

is also sensitive to the target's electrical properties, such 

as water content: Wetter objects appear bright and drier 

targets appear dark (with the exception of smooth bodies 

of water, which behave as at surfaces and reflect 

incoming pulses away, thus they appear dark). 

Backscatter also varies depending on the use of different 

polarization and observations angles: Low incidence 

angles (perpendicular to the surface) will result in high 

backscatter, while it decrease with increasing incidence 

angle. 

 

III. RESULTS AND DISCUSSION 
 

In this section, we present the results of our proposed 

De-speckling algorithm and compare them with the 

enhanced Lee filter and some recent state-of-the-art 

methods. We also compare our results with a Stein–

Block thresholding (SBT) method proposed in. This 

method was shown to be nearly mini-max over a large 

class of images in the presence of additive bounded 

noise. This method requires a threshold parameter, 

which we set to the theoretical value 4.505 as derived in. 

Furthermore, we compare the performance of our 

combined dictionary-based approach to de-speckling 

with that of a fixed transform-based de-speckling 
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method. In particular, we apply soft thresholding on the 

sub-band coefficients of the wavelet transform. We call 

the resulting method wavelet-based thresholding (WT). 

For the MCA method, we use the curvelet transform to 

represent the piecewise smooth component and 2D-DCT 

to represent the texture component. In Fig., we display 

the test images used for different Experiments in this 

paper. In these experiments, we use the relative error 

(RE) and the equivalent number of looks (ENL) 

 

                     

                                         (a) 

 

                   

                                        (b) 

  

                   

                                         (c) 

                   

                                        (d) 

Figure 4. (a) Noisy image, L = 4, RE = 0.498. (b) Restored 

image using our Method, RE = 0.118. (c) Noisy image, L = 4, 

RE = 0.500. (d) Restored image using our method, RE = 0.065. 

 

 

 

 

IV. CONCLUSION 

 
We proposed another technique for dot lessening in SAR 

symbolism focused around differentiating a picture into 

different segments.  Interesting to this methodology is 

the capacity to utilize particular lexicons of 

representations suited for detachment with an iterative 

plan that has the capacity hold critical gimmicks. 

Investigations demonstrated that this strategy performs 

positively contrasted with other focused routines. This 

new process is likewise significant for some SAR picture 

comprehension undertakings, for example, street 

location, track recognition, boat wake Identification, 

composition division for horticultural scenes, and 

coastline recognition.  

 

Likewise, particular lexicons could be intended to be 

utilized with this system to catch one of a kind mark 

while managing with dot evacuation. 
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